Services

Technical Information Nanomass Gas Density

MEMS Coriolis density meter

The device for inline gas density measurement

Applications

- The measuring principle operates in a 0 to 30 kg/m³ density range, considering pressure and temperature
- Highly accurate density and concentration measurement of non-corrosive, inflammable and non-inflammable gases and gas mixtures

Device properties

- Integrated pressure and temperature measurement
- Different hazardous area approvals available
- Only a very small medium amount required
- 2-line, backlit display with push buttons
- RS232 interface, USB and several outputs
- Integrated data logger

Your benefits

- High process safety and product quality permanent process monitoring in real-time
- High availability low-maintenance
- Increased process productivity no time-consuming laboratory analysis
- Fully traceable density measurement calibration facilities
- Easy implementation in various kinds of processes compact device design
- Easy installation without additional equipment

Table of contents

Document information3 Symbols and abbreviations used	
Function and system design	
Input5Measured variable5Measuring range5	
Output5Output signal5Signal on alarm5Galvanic isolation6	
Power supply6Pin assignment of connector6Supply voltage6Power consumption7Current consumption7Power supply failure7Electrical connection7Cable connection8Cable specification8	
Performance characteristics8Reference operating conditions8Maximum measured error8Repeatability9Response time9Influence of medium temperature9Influence of variations in the medium temperature9Influence of ambient temperature9Influence of medium pressure9Influence of variations in the medium pressure9	
Installation9Mounting location9Orientation9Flow direction9Inlet and outlet runs9Special mounting instructions10	
Environment11Ambient temperature range11Storage temperature11Climate class12Degree of protection12Shock resistance12Interior cleaning12Electromagnetic compatibility (EMC)12	
Process12Media12Medium temperature range12	

Medium density range12Pressure-temperature ratings13Secondary containment pressure rating13Flow limit13Pressure loss13System pressure13Thermal insulation13Vibrations13
Mechanical construction14Design, dimensions14Weight15Materials15Process connection15
Operability16Local display16Remote control16Reliable operation16Languages16
Certificates and approvals16CE mark16C-Tick symbol16CRN approval16Ex approval16Other standards and guidelines16
Ordering information 17
Application packages 17
Accessories17Device-specific accessories17Service-specific accessories18System components18
Documentation19Standard documentation19Supplementary device-dependent documentation19
Registered trademarks 19

Document information

Symbols and abbreviations used

Electrical symbols

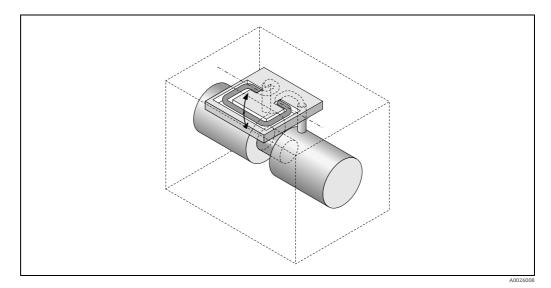
Symbol	Meaning
 A0011197	Direct current A terminal to which DC voltage is applied or through which direct current flows.
~ 	Alternating current A terminal to which alternating voltage is applied or through which alternating current flows.
	Direct current and alternating current
A0017381	A terminal to which alternating voltage or DC voltage is applied.A terminal through which alternating current or direct current flows.
	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

Symbols for certain types of information

Symbol	Meaning
A0011182	Permitted Indicates procedures, processes or actions that are permitted.
A0011183	Preferred Indicates procedures, processes or actions that are preferred.
A0011184	Forbidden Indicates procedures, processes or actions that are forbidden.
A0011193	Tip Indicates additional information.
A0011194	Reference to documentation Refers to the corresponding device documentation.
A0011195	Reference to page Refers to the corresponding page number.

Symbols in graphics

Symbol	Meaning
Symbol	Weahing
1, 2, 3,	Item numbers
A, B, C,	Views
A-A, B-B, C-C,	Sections
≈➡	Flow direction
A0013441	
EX A0011187	Hazardous area Indicates a hazardous area.
A0011188	Safe area (non-hazardous area) Indicates the non-hazardous area.


Abbreviations

Abbreviation	Meaning
MEMS	Micro-Electro-Mechanical System

Function and system design

Measuring principle

The measurement method is based on a micro-channel which is caused to oscillate at resonance frequency. The micro-channel is part of a micro-electro mechanical system (MEMS). The micro-channel is integrated in an internal bypass. When fluid flows through the measuring device, the bypass arrangement causes a pressure drop across the micro-channel, causing the medium to enter the micro-channel.

Density measurement

The density measurement is performed by determining the eigenfrequency of the micro-channel, which itself depends on the mass or the density of the fluid in the micro-channel. The higher the fluid density, the lower the eigenfrequency. The eigenfrequency is thus a function of the fluid density.

$$f \propto \sqrt{\frac{E \cdot I}{\rho_{\text{Tube}} \cdot A_{\text{Tube}} + \rho_{\text{Fluid}} \cdot A_{\text{Fluid}}}}$$

 $f = eigenfrequency, E \cdot I = pipe \ rigidity, \\ \rho_{Tube} = pipe \ density, \\ A_{Tube} = pipe \ cross-section, \\ \rho_{Fluid} = fluid \ density, \\ A_{Fluid} = fluid \ cross-section, \\ \rho_{Fluid} = fluid \ density, \\ A_{Fluid} = fluid \ density, \\ A_{Fl$

Temperature measurement

The temperature of the micro-channel is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the fluid temperature in the micro-channel and it is also available as an output signal.

Pressure measurement

As the gas density depends heavily on the pressure, a pressure sensor measures the pressure during the density measurement. The pressure is also available as an output signal.

Derived measured variables

A reference density and the average molar mass can be derived from the measured density, temperature and pressure according to the ideal gas laws. In addition, in the case of binary gas mixtures a concentration can be determined according to a user-configurable model.

Measuring systemThe measuring device uses a micro-electro mechanical system (MEMS) for density and temperature
measurement, and a capacitance pressure sensor for pressure measurement. The components of the
measuring device form an inseparable unit.

The MEMS chip consists of an oscillatory micro-channel, an oscillation generator, an oscillation detector and an integrated temperature sensor. The MEMS chip and the pressure sensor are connected to the electronics system and can be controlled and read by it.

The fluid is directed into the micro-channel via an internal bypass. In this way, the measuring device can also be used for large flow rates. Furthermore, any unnecessary pressure loss in the process pipe is also prevented.

Input

Measured variable	Direct measured variables	
	 Density Temperature (at density measurement) Pressure (at density measurement) 	
	As the ambient temperature can influence the medium temperature in the micro-channel, the measured temperature can deviate from the actual process temperature.	
	Derived measured variables	
	 Reference density according to the ideal gas law Average molar mass according to the ideal gas law Concentration according to user-configurable model in the case of binary gas mixtures 	
Measuring range	Measuring range for gases	

Measuring range	measuring range for gases		
	Range for full scale values (density) ρ_{min} to ρ_{max}	0 to 30 kg/m ³ (0 to 0.03 g/cm ³ , 0 to 0.03 SGU)	

Output

Output signal

Current output		
Current output	2× 4-20 mA (passive)	
Maximum output values	23 mA	
Load	0 to 700 Ω	
Resolution	8 μΑ	
Damping	Configurable: 0 to 120 s	
Assignable measured variable	 Density Reference density Concentration Temperature Pressure 	

Signal on alarm

Failure information is displayed as follows.

Current output

Failure mode	Choice of failure information (in accordance with NAMUR Recommendation NE 43) if the tube does not oscillate correctly or a value is outside the density range:
	Minimum value: 2 mAMaximum value: 22 mA (not Namur: 23 mA)
Breakdown of power supply	Breakdown information during disconnection of power supply: <1 mA

Local display

Plain text display	Error message on operational display.
--------------------	---------------------------------------

"Nanomass Communication" operating tool

formation Error message with status information	
---	--

Light emitting diodes (LED)

Status information	Status indicated by two light emitting diodes (in accordance with NAMUF Recommendation NE 43).
	The light emitting diodes indicate the following information: Supply voltage active Data transmission active
	 Device alarm/error has occurred

Galvanic isolation

The current outputs are galvanically isolated from the rest of the system.

Power supply

Pin assignment of connector Connector for supply voltage

	Pin	Assig	nment	Coding, connector face	Connector/ socket
	1	L-	DC 8 to 30 V	А	Connector
A0026825	2	L+			

Connector for signal transmission

4-20 mA connector

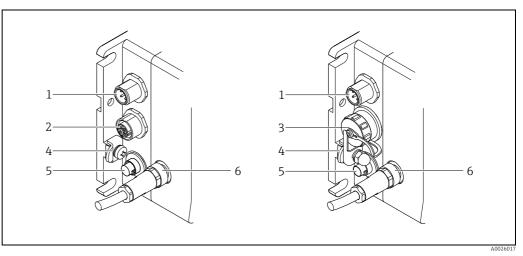
	Pin	Assig	nment	Coding, connector face	Connector/ socket
$2 \rightarrow 0 \rightarrow 1$	1	+/-	Current output 1, 4-20 mA (passive)	А	Connector
3 0 0 4	2	-/+	Current output 1, 4-20 mA (passive)		
	3	+/-	Current output 2, 4-20 mA (passive)		
A0026826	4	-/+	Current output 2, 4-20 mA (passive)		

RS232 device socket

1	Pin	Assignment	Coding, connector face	Connector/ socket
	1	Shield	А	Socket
4-0-3	2	Txout (transmitted data)		
A0026827	3	Rxin (received da)		
	4	Common ground		

USB device socket

	Assignment	Connector/socket
	Mini-USB, type B, Buccaneer	Socket
A00268	28	

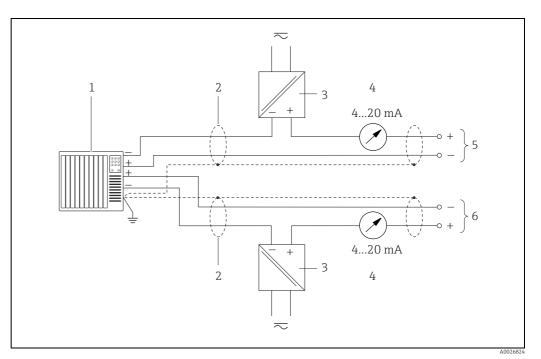

Supply voltage

	DC 8 to 30 V, the power unit must be tested to ensure it meets safety requirements (e.g. PELV, SELV)
USB port (optional)	DC 5 V

Power consumption	Maximum power consumption	400 mW	
Current consumption	Maximum switch-on current	1 A (< 0.125 ms)	
Power supply failure	 The configuration and recorde 	d data are retained in the data memory.	

• Internal real-time clock is battery-backed and continues to run. The operating life of the real-time battery is 10 years.

Electrical connection



1 = Connector for 4-20 mA; 2 = RS232 interface (optional); 3 = USB port (optional); 4 = Grounding clamp 5 = Connector for supply voltage; 6= Connector for pressure sensor (connected on delivery)

Pin assignment of connector ($\rightarrow \boxtimes 6$).

Connection example for 4-20 mA current output

- 1 = Automation system with current input (e.g. PLC); 2 = Cable shield, see cable specification ($\rightarrow \cong 8$) 3 = Power supply 12 to 24 V; 4 = Analog display unit, observe maximum load ($\rightarrow \cong 5$)

5 = Measuring device, current output 1 (pin 1 and 2, protected against reverse polarity); 6 = Measuring device, current output 2 (pin 3 and 4, protected against reverse polarity)

Cable connection

Power connection	M9, 2-pin (connector)
4-20 mA	M12, 4-pin (connector)
USB port (optional)	Mini-USB, type B (socket)
RS232 interface (optional)	M12, 4-pin (socket)

Cable specification

Permitted temperature range

■ -40 to 80 °C (-40 to 176 °F)

• Minimum requirement: cable temperature range \geq ambient temperature + 20 K

Power supply cable

Outer diameter	3.5 to 5 mm
Number of cores	Min. 2
Cable resistance	77.8 Ω/km at 20 °C
Shielding	Single shielding

Signal cable

Shielding	A shielded cable is recommended. Observe grounding concept of the
	plant.

USB cable

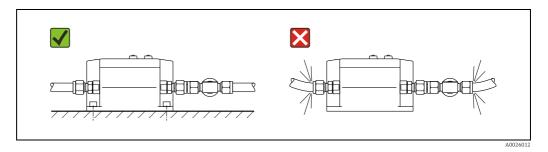
Cable type	Mini USB, type B, Buccaneer; standard USB, type A
Cable length	Max. 5 m

RS232 cable

Cable type	M12, 4-pin; D-Sub, 9-pin
Cable length	Max. 5 m
Transmission rate	57600 Bd

Performance characteristics • Gases with density <30 kg/m³; temperature +5 to +60 $^{\circ}$ C (+59 to +113 $^{\circ}$ F); pressure 0 to 20 bar (0 **Reference** operating conditions to 290 psi) Specifications as per calibration protocol Maximum measured error Base accuracy under reference operating conditions Density (gases) $\pm 0.1 \text{ kg/m}^3$ ($\pm 0.0001 \text{ g/cm}^3$) At field density calibration: ±0.05 kg/m³ (±0.00005 g/cm³)(applies after field density calibration under process conditions) The relative accuracy of the density measurement increases with increasing system pressure. f Temperature (at density measurement) ±0.5 °C Pressure (at density measurement) ±0.05 bar

	Accuracy of outputs		
	o.r. = of measuring range of current output		
	In the case of analog outputs, take the accuracy of the output into consideration for the inaccuracy specification.		
	Current output		
	Max. ±0.1 % o.r. or ±15 µA		
Repeatability	Base repeatability under reference	ce operating conditions	
	Density (gases)		
	$\pm 0.05 \text{ kg/m}^3$ ($\pm 0.00005 \text{ g/cm}^3$)		
	Temperature		
	±0.25 ℃		
	Pressure		
	±0.02 bar		
Response time	500 ms		
Influence of medium temperature	The medium temperature does not affect the measuring accuracy. The effects of temperature are compensated for by measuring the temperature in the micro-channel.		
Influence of variations in the medium temperature	If the medium temperature changes quickly (>2 C^{\prime} /min), the measured error can be higher than specified under reference operating conditions.		
Influence of ambient temperature	o.r. = of measuring range of curre	nt output	
I	Current output		
	Temperature coefficient	Max. +50 ppm/°C o.r. or ±1 µA/°C	
Influence of medium pressure	Pressure effects are compensated for by measuring the pressure. The medium pressure therefore does not affect the absolute measuring accuracy.		
Influence of variations in the medium pressure	In the case of the derived measured variables (concentration, reference density and molar mass), the accuracy can be affected if the medium pressure changes quickly (>0.1 bar/s).		


Installation

Mounting location	The measuring device is usually installed in a bypass line. If flow rates are low, the device can also be installed in the main pipe.	
	 Installation in a bypass line is recommended in the following cases: Flow rate >1 l/min (0.26 gal/min.) Pipeline diameter >6 mm (0.24 in) 	
Orientation	The orientation of the device does not affect the measuring accuracy.	
Flow direction	The flow direction does not affect the measuring accuracy.	
Inlet and outlet runs	Inlet and outlet runs do not affect the measuring accuracy.	

Special mounting instructions

Wall mounting

Use drill holes and M6 screws to secure the filter to a wall or a secure base.

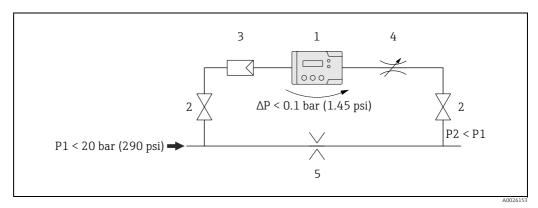
Pipe mounting

Use the "pipe mounting kit" accessory to secure to a pipe or post.

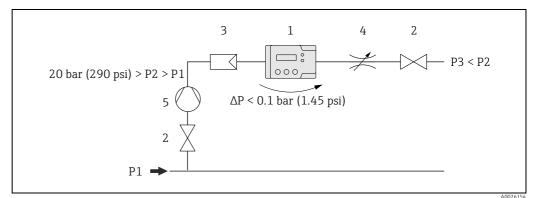
Installation in a bypass

Note the following when installing in a bypass line:

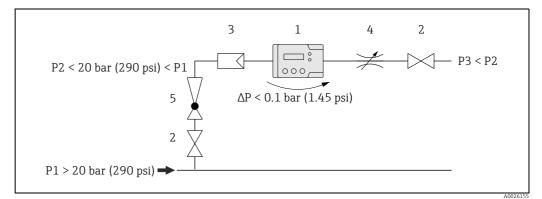
- A pressure drop must be created for the medium to flow through the measuring device.
- The maximum permissible pressure drop of 0.1 bar (1.45 psi) across the measuring device may not be exceeded.
- The bypass line can be routed to the atmosphere or back to the process pipe.


Examples:

• Create necessary pressure drop with throttle (or flow monitor) downstream from the measuring device.


1 = Nanomass; 2 = Valve; 3 = Filter; 4 = Throttle

• Create necessary pressure drop with orifice plate in process pipe and with throttle (or flow monitor) downstream from the measuring device.


1 = Nanomass; 2 = Valve; 3 = Filter; 4 = Throttle; 5 = Orifice plate

• Create necessary pressure drop with compressor upstream and throttle (or flow monitor) downstream from the measuring device.

1 = Nanomass; 2 = Valve; 3 = Filter; 4 = Throttle; 5 = Compressor

• If process pressure > 20 bar: create necessary pressure drop with pressure reduction valve upstream and throttle (or flow monitor) downstream from the measuring device.

1 = Nanomass; 2 = Valve; 3 = Filter; 4 = Throttle; 5 = Pressure reduction valve

Filter

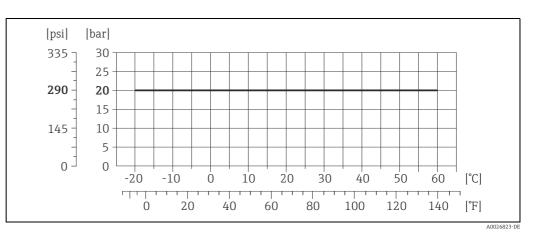
To prevent the micro-channel from clogging, it is advisable to install a filter upstream from the measuring device. The filter is included in the delivery.

- Recommended filter pore size: $\leq 15 \ \mu m$

Swagelok pipe fitting

The measuring device and the filter supplied are mounted in the pipe using a $\frac{1}{4}$ " Swagelok pipe fitting.

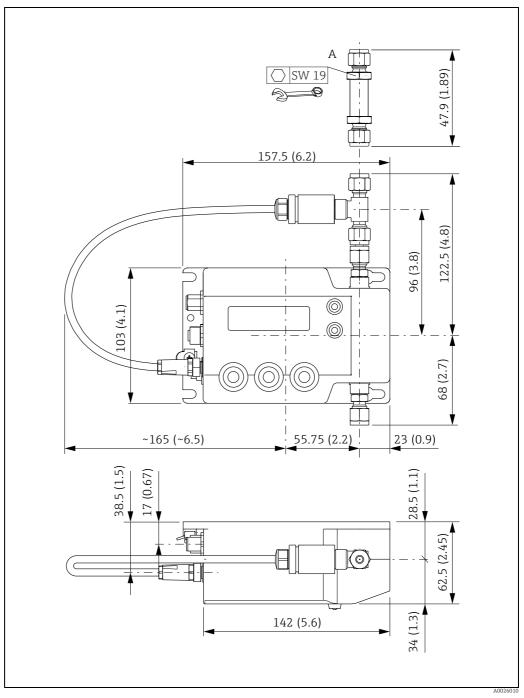
Environment


Ambient temperature range	Non-Ex version	-20 to +60 °C (-4 to +140 °F)
	Ex ia IIC T4 version	-20 to +60 °C (-4 to +140 °F)
	 If operating via USB port: operating temperature is limited to 0 to 60 °C (32 to 140 °F). If operating outdoors: avoid direct sunlight, particularly in warm climatic regions. 	
Storage temperature	−20 to +60 °C (−40 to +140	°F), preferably +20 °C

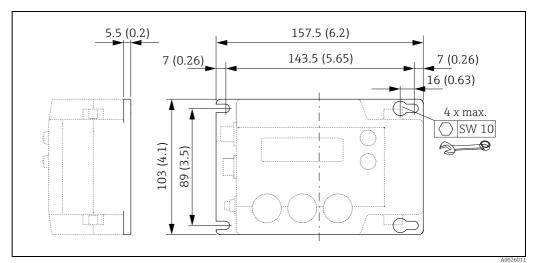
Climate class	DIN EN 60068-2-38 (test Z/AD)
Degree of protection	IP65/67
Shock resistance	As per IEC/EN 60068-2-31
Interior cleaning	Permitted cleaning agents: Isopropyl alcohol (IPA) Acetone Hexane
Electromagnetic compatibility (EMC)	 According to IEC/EN 61326 Complies with emission limit for industry as per EN 550011 (Class A) For details, please refer to the Declaration of Conformity.

Process Permitted media are the gases listed below with the following features: Media Noncorrosive Absolute humidity < 10 q/m³ (dew point < 11 °C) Relative humidity (non-condensing) < 80% • Concentration of helium < 50 ppm (pure helium is not permitted) Permitted gases or mixtures of such gases: Nitrogen (N₂) Oxygen (O₂) Air Carbon dioxide (CO₂) Neon (Ne) Argon (Ar) Krypton (Kr) Xenon (Xe) Hydrogen (H₂) • Methane (CH_4) • Natural gas (maximum permitted helium concentration: 50 ppm) • Ethyne (acetylene) (C_2H_2) Ethylene (C₂H₄) Ethane (C₂H₆) Propene (C₃H₆) Propane (C₃H₈) Butane (C₄H₁₀) LPG (supplied as gas) If you are using gases other than those indicated above, please contact your Endress+Hauser Sales Center at: www.endress.com/worldwide. -20 to +60 °C (-4 to +140 °F) Medium temperature range Medium density range 0 to 30 kg/m³ (0 to 1.9 lb/ft³)

Pressure-temperature ratings


The following pressure/temperature diagram refers to the entire device and not just the process connection.

Secondary containment pressure rating	The sensor housing is filled with dry nitrogen on delivery and protects the electronics and mechanics inside.		
	The housing does not have pressure vessel classification.		
Flow limit	Recommended max. flow for complete accuracy	1 l/min (0.26 gal/min)	
Pressure loss	Recommended max. pressure drop across the measuring device for complete accuracy	0.1 bar (1.45 psi)	
System program	Г		
System pressure	Permitted absolute system pressure	Max. 20 bar (290 psi)	
	The relative accuracy of the density measurement increases with increasing system pressure.		
Thermal insulation	Due to a low thermal capacity of the medium, the medium temperature can be greatly affected by the ambient temperature through the supply line and the measuring device. The influence of the ambient temperature on the medium temperature can be reduced by insulating the supply line.		
Vibrations	Due to the high operating frequency of the micro-channel, vibrations (<20 kHz) do not affect measuring accuracy.		


Mechanical construction

Design, dimensions

Dimensions in mm (in)

A = ¼" Swagelok in-line filter SS-4F-15

Mounting holes, dimensions in mm (in)

Weight

Ca. 1.5 kg (3.3 lb)

Materials

Housing

- Aluminum, powder-coated
- Window material: polycarbonate

Connections

4-20 mA connection	 Socket: die-cast zinc, nickel-plated Contact housing: polyamide Contacts: brass, gold-plated
RS232 interface	 Socket: die-cast zinc, nickel-plated Contact housing: polyamide Contacts: brass, gold-plated
USB port	 Socket: polyester Contact housing: polyester Contacts: copper base alloy, gold-plated Protection cap: polyester
Power connection	 Socket: brass, nickel-plated Contact housing: polyamide Contacts: brass, gold-plated
Pressure sensor connection	 Socket: brass, nickel-plated Contact housing: polyamide Contacts: brass, gold-plated

Wetted parts, fluidic system

Process connection	Stainless steel, 1.4404 (316L)	
Manifold	Stainless steel, 1.4542 (17-4 PH)	
MEMS chip	SiliconBOROFLOAT 33 glassEpoxy	
Pressure sensor	 Stainless steel, 1.4404 (316L) Ceramic (AI₂O₃) Viton 	
Threaded seals	PTFE	

Process connection

¹/₄" Swagelok pipe fitting

	Operability	
Local display	Display elements	
	2-line liquid crystal display with 16 characters per line.Format for displaying various measured variables can be individually configured.	
	Operating elements	
	Local operation with three keys ($\boxdot \boxdot$).	
Remote control	 Operation via "Nanomass Communication" operating tool for Windows desktops. 	
Reliable operation	• If the power supply fails, data stored in the measuring device and device configurations are retained.	
Languages	The operating language is English.	

Certificates and approvals

CE mark	The measuring system meets the legal requirements of the EC Directives. Endress+Hauser confirms that the device has been successfully tested by applying the CE mark.	
C-Tick symbol	The measuring system complies with the EMC requirements of the "Australian Communications and Media Authority (ACMA)".	
CRN approval	As an option, the measuring system can also be ordered with CRN approval (Canadian Registration Number).	
Ex approval	Information about currently available Ex versions (ATEX, FM, CSA, IECEx, NEPSI etc.) can be supplied by your E+H Sales Center on request. All explosion protection data are given in a separate Ex documentation, which is available upon request.	
Other standards and guidelines	 EN 60529 Degrees of protection provided by enclosures (IP code) 	
	 IEC/EN 60068-2-6 Environmental testing: Test procedure - Test Fc: vibration (sinusoidal). 	
	 IEC/EN 60068-2-31 Environmental testing: Test procedure - Test Ec: rough handling shocks, primarily for equipment- type specimens. 	
	 EN 61010-1 Safety requirements for electrical equipment for measurement, control and laboratory use – general requirements 	
	 IEC/EN 61326 "Emission in accordance with Class A requirements". Electromagnetic compatibility (EMC requirements) 	
	 NAMUR NE 43 Standardization of the signal level for the breakdown information of digital transmitters with analog output signal 	

Ordering information

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser website: www.endress.com → Select country → Instruments → Select device → Product page function: Configure this product
- From your Endress+Hauser Sales Center: www.endress.com/worldwide

i

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: direct input of information specific to measuring point, such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format

Application packages

Application packages are available for the device to extend the device functionality, where needed. The application packages can be ordered with the device or subsequently from Endress+Hauser. Detailed information on the appropriate order code is available from your local Endress+Hauser Sales Center or on the product page of the Endress+Hauser website: www.endress.com.

Package	Description
Concentration Measurement	Concentrations are calculated and displayed. Using the application package, the measuring device can output the concentration of a gas in a binary mixture. Certain mixtures are already preprogrammed in the measuring device. Furthermore, the concentration of any binary gas mixture can be determined by entering coefficients. Your Endress+Hauser Sales Center can provide you with the information that is needed to determine the coefficients, which must be stored in the measuring device to calculate the concentration.
Datalog function	Retrieval and Saving of measuring data. Via the "Measuring data retrieval" function area, measuring data that are saved in the internal data memory can be retrieved. This also includes the saving of measuring data to a text file that can be imported into a database.

Accessories

Various accessories are available for the device, and can be ordered with the device or at a later stage from Endress+Hauser. Detailed information on the appropriate order code is available from your local Endress+Hauser Sales Center or on the product page of the Endress+Hauser website: www.endress.com.

Device-specific accessories	Accessories	Description
	Power cable	Cable of 5 m (15 ft) length for power supply.
	Power connector	Connector for power cable, 2-pin.
	RS232 service cable	Cable of 2 m (6 ft) length for communication with Nanomass Communication.
	RS232 connector	Connector for service cable.
	4-20mA connector	Kit of 2 connectors for connecting the analog measuring signal with a higher-order system.
	USB cable	Cable of 2 m (6 ft) length for power supply and communication with Nanomass Communication.
	Grounding clamp	Grounding clamp for RS232 or USB version.
	¹ / ₄ "-Swagelok pipe fitting	For the mounting of the measuring device and the filter in the pipeline.

Accessories	Description
Filter cartridge	Kit of 3 spare filter cartridges to change the used filters.
Pipe mounting set	To secure to a pipe or post.
Tabletop stand	To secure to a tabletop.

Service-specific accessories

Accessories	Description		
Applicator	 Software for selecting and sizing Endress+Hauser measuring devices: Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, accuracy or process connections. Graphic illustration of the calculation results 		
	Administration, documentation and access to all project-related data and parameters throughout the entire life cycle of a project.		
	 Applicator is available: Via the Internet: https://wapps.endress.com/applicator On CD-ROM for local PC installation 		
W@M	Life cycle management for your plant. W@M supports you with a wide range of software applications over the entire process: from planning and procurement, to the installation, commissioning and operation of the measuring devices. All the relevant device information, such as the device status, spare parts and device-specific documentation, is available for every device over the entire life cycle. The application already contains the data of your Endress+Hauser device. Endress+Hauser also takes care of maintaining and updating the data records.		
	W@M is available:Via the Internet: www.endress.com/lifecyclemanagementOn CD-ROM for local PC installation		

System components

Accessories	Description
Memograph M graphic	The Memograph M graphic display recorder provides information on all relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.
display recorder	For details, see "Technical Information" TI00133R and Operating Instructions BA0024TR.

Documentation

For an overview of the scope of the associated Technical Documentation, refer to the following:

- CD-ROM provided.
- W@M Device Viewer: enter the serial number indicated on the nameplate (www.endress.com/ deviceviewer).
- *The Endress+Hauser Operations App*: enter the serial number indicated on the nameplate or scan the 2-D matrix code (QR code) provided on the nameplate.

Standard documentation	Document type	Documentation code
	Operating Instructions	BA01449D
	Brief Operating Instructions	KA01192D

Supplementary device- dependent documentation	Document type	Documentation code
	Safety Instructions, Cl.I, Div.1, Zone 0 for IS	XA01376D

Registered trademarks

Applicator[®], Nanomass[®]

Registered or registration-pending trademarks of the Endress+Hauser Group

BOROFLOAT®

Registered trademark of Schott AG, Jena, Germany

$Microsoft^{\ensuremath{ iny B}}$

Registered trademark of the Microsoft Corporation, Redmond, Washington, USA

Swagelok[®]

Registered trademark of Swagelok & Co., Solon, USA

www.addresses.endress.com

