

FURUNO Timing Multi-GNSS Receiver Model **GT-90**

Function Specifications

(Document No. SE22-600-009-02)

www.furuno.com

IMPORTANT NOTICE

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of the publisher, FURUNO ELECTRIC CO., LTD. © 2020-2023 FURUNO ELECTRIC CO., LTD. All rights reserved.

Any information of this documentation shall not be disclosed to any third party without permission of the publisher, FURUNO ELECTRIC CO., LTD.

The following satellite systems are operated and controlled by the authorities of each government.

- GPS, SBAS(WAAS) : USA
- GLONASS :Russia
- Galileo, SBAS(EGNOS) :Europe
- QZSS, SBAS(MSAS) :Japan
- SBAS(GAGAN) : India
- BeiDou: China

Since this product receives satellite signals to operate, its performance may deteriorate significantly depending on the operational status and broadcast contents of each satellite. The items described in the various specifications of this product are not guaranteed, including the above cases. When using each satellite, it is necessary to fully understand the characteristics of the system and utilize its benefits at the user's responsibility.

This document is the specifications for the following products. If the target products are different or the associated software is different, please refer to the corresponding specifications separately. •GT-90

The software of this product has been designed and verified with the utmost care, but if you find any problems during use, please contact us. We may check and provide the correction software. In addition, if we find a problem, we may contact you and provide correction software.

When we provide a modified software, we may ask you to update the software. Therefore, we strongly recommend that the serial port of this product be accessible from outside your product so that you can easily update the software. We also strongly recommend that the serial port of this product be connected to a network, etc., so that software can be updated by remote download. If you need more information on how to update the software, please contact us.

FURUNO ELECTRIC CO., LTD. reserves the right to make changes to its products and specifications without notice.

Revision History

Version	Change contents	Date
0	Initial release	2022.04.12
1	Change tracking sensitivity (Table 3-3, Table 3-4 and Table 3-5) Change acquisition sensitivity (COLD) (Table 3-7)	2023.02.07
2	Update in chapter 1 Tables 3-3 to 3-8 are summarized in Table 3-3. Change tracking sensitivity (section 3) Change in table 6.1-1 Change in table 6.1-2	2023.06.05

Table of Contents

1	Outline	•1
2	Terms·····	•1
3	GNSS Receiver Performance	- 5
4	Environment Robustness Specifications	•7
	Operation restrictions	
-	1PPS Output specifications	
	6.1 1PPS	

1 Outline

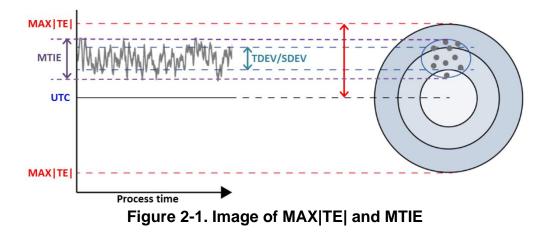
This document is the functional specifications of the multi-band GNSS receiver GT-90. The software version covered by this manual is 4850-569-015.

2 Terms

<u>The following is a detailed description of the terms used in this document.</u> <u>It contains a lot of important information about the behavior of this product, so we strongly recommend that you read it carefully.</u>

Term	Description
GPS	GPS (Global Positioning System) is a GNSS owned and operated by the United States of America.
GLONASS	GLONASS (Global Navigation Satellite System) is a GNSS owned and operated by the Russian Federation.
Galileo is a GNSS owned by the European Union and operated European GNSS Agency (GSA)	
BeiDou	BeiDou Navigation Satellite System (BDS) is a GNSS owned and operated by the People's Republic of China.
QZSS	QZSS (Quasi-Zenith Satellite System) is a GNSS owned and operated by Japan.
SBAS	A general term for satellite systems that broadcast GNSS augmentation information.
GNSS (GNSS Satellite)	Abbreviation for Global Navigation Satellite System. It is used as a general term for satellite constellation such as GPS, GLONASS, Galileo, BeiDou, NavIC, QZSS, and SBAS.
Ephemeris	An ephemeris is one of the information that each GNSS satellite broadcasts. It shows the time and the detailed orbital information of the broadcasting satellite. This information is necessary for positioning, and it is repeatedly broadcasted in short cycles. In the case of GPS, it is broadcast every 30 seconds. Starting with the ephemeris remaining in the receiver is called HOT START in this product. Although it depends on the type of satellite, the expiration date of the ephemeris possessed by this product is 1 to 4 hours after the last ephemeris was received.
Almanac	An almanac is one of the information that GNSS satellites broadcast. It contains various correction information, UTC parameters, and rough orbital information for all the satellites of a constellation. In the case of GPS, Almanac is broadcast every 750 seconds. In this product, starting with the almanac information remaining in the receiver is called WARM START. If neither ephemeris nor almanac remains in the receiver, it will be a COLD START.

Table 2-1. Terms related to this document


Term	Description
Jamming signal	Jamming signals are electrical noises generated in or around the GNSS signal bands by other equipment or radios. Jamming signals are often intentionally broadcasted by malicious actors with the intend to affect the performance of near-by GNSS receivers. Jamming signals will interfere with the reception of genuine GNSS satellite signals, which may result in poor or failed positioning. This product has a function to detect and mitigate jamming signal.
Spoofing signalSpoofing signals are signals generated by malicious actors that mir broadcast contents of the GNSS satellite using something similar to simulator. Receiving such signals may affect position and time. This product has a function to detect and eliminate spoofing signals.	
DSS (Dynamic Satellite Selection)	DSS is a unique multipath countermeasure by Furuno that automatically detects satellites that may cause accuracy deterioration and excludes them from positioning calculations. It greatly reduces the effect of multipath and contributes to improved accuracy. This function is ON by default.
T-RAIM	Abbreviation for Time Receiver Autonomous Integrity Monitoring It is a mechanism to identify and eliminate satellites that may adversely affect the positioning calculation. It is based on the principle of combination and majority voting when the number of GNSS satellites is larger than the minimum number of satellites required for the positioning calculation. This function works automatically in this product.
Time to First Fix (HOT)	The GNSS simulator inputs a signal of -130dBm to the end of the antenna. At this time, the time from when the HOT RESTART command is input to the receiver with the ephemeris until the initial positioning is performed, is defined as the initial positioning time (HOT). This value is the result when multiple GNSS systems are used.
Time to First Fix (COLD)	The GNSS simulator inputs a signal of -130dBm to the end of the antenna. At this time, the time from when the COLD RESTART command is input to the receiver until the initial positioning is performed, is defined as the initial positioning time (COLD). This value is the result when multiple GNSS systems are used.
Acquisition sensitivity (HOT)	This is the sensitivity that enables initial positioning after entering HOT RESTART command to the receiver with the ephemeris and transferred to Time Only mode.
Acquisition sensitivity (COLD)	This is the sensitivity that enables initial positioning after the receiver is powered on with no backup.
Tracking sensitivity	This is the sensitivity that allows a receiver to continue receiving that signal after the initial reception.
Re-acquisition time	In Time Only mode, the satellite signal is received at -130dBm and positioned. After confirming the positioning, leave the antenna disconnected for 10 seconds. After that, when the antenna is reconnected, the time required to resume signal reception is defined as the re-acquisition time.

Term	Description			
Re-acquisition sensitivity	In Time Only mode, the satellite signal is received at -130dBm and positioned. After confirming the positioning, leave the antenna disconnected for 10 seconds. Decrease the signal sensitivity while the antenna is not connected, and then reconnect the antenna. At this time, the sensitivity at which re-positioning is possible is defined as the Re-acquisition sensitivity.			
MAX TE	MAX TE means absolute value of maximum time error and indicates the maximum deviation (absolute value) from UTC time of 1PPS. See Figure 2.1 for an image.			
MTIE	MTIE means maximum time intervative value of 1PPS. See Figure 2.1 for	al error and shows the relative MIN-MAX an image.		
SDEV	SDEV means standard deviation a	nd means the variance value of 1PPS.		
TDEV	TDEV means time deviation and in 1PPS.	dicates the degree of fluctuation of		
PRTC	PRTC is one of the international standards established by ITU-T (International Telecommunication Union Telecommunication Standardization Sector), which is a United Nations organization that creates and recommends global standards for communication standards and is a performance standard defined by G.8272. The target is 1PPS output from the product, and if MTIE and TDEV meet the specified threshold value, it is considered to be PRTC compliant.			
	PRTC-A is one of the PRTC stands following conditions. [TDEV] Time deviation limit [nsec]	Observation interval τ [sec]		
	3	1<т<100		
	0.03т	100<т<1000		
PRTC-A	30	1000 <t<10000< td=""></t<10000<>		
	[MTIE]			
	MTIE limit [nsec]	Observation interval T [sec]		
	0.275т+ 25	1<т<273		
	100	273<т		

Term	Description		
PRTC-B is one of the PRTC standard, and MTIE & TDEV meet the f conditions.			
	[TDEV]	Time deviation limit [nsec]	Observation interval τ [sec]
		1	1<т<100
PRTC-B		0.01т	100<т<500
PRIC-D		5	500 <r<10000< td=""></r<10000<>
	[MTIE]		
		MTIE limit [nsec]	Observation interval τ [sec]
		0.275t+ 25	1<т<55
		40	55<т

3 GNSS Receiver Performance

This chapter describes the specifications for GNSS reception. The performance described in this chapter was evaluated in the measurement environment shown in Figure 3.1 below. In addition, the conditions at the time of measurement are the default setting, 25 degree C constant (no airflow). If a signal reception mask is set with a command, that mask may limit the performance.

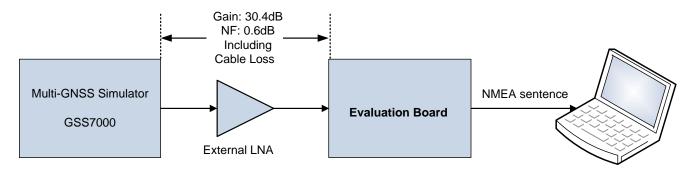


Figure 3-1. Measurement environment

The following are specifications related to the receiving channels.

Specification	Note		
	The following satellite constellations are targeted.		
	• GPS L1 C/A • GLONASS L10F		
32 channels	・Galileo E1 ・BeiDou B1I		
	BeiDou B1C QZSS L1 C/A		
	• SBAS L1		

Table 3-1. Received channel specifications

The following are the specifications for the initial positioning time and re-acquisition time. See Chapter 2 for definitions of each item.

ltem	Specification	ltem	Specification
TTFF (COLD)	35 seconds (TYP)	TTFF (HOT)	2 seconds (TYP)
Re-acquisition time	1 second (TYP)		

Table 3-2. TTFF / Re-acquisition time specification

The following are the Sensitivity specifications for each satellite constellation.

<i>,</i> ,			
Acquisition sensitivity (COLD)	Acquisition sensitivity (HOT)	Re-acquisition sensitivity	Tracking sensitivity
-148 dBm	-162 dBm	-157 dBm	-163 dBm
-146 dBm	-156 dBm	-153 dBm	-162 dBm
-140 dBm	-156 dBm	-156 dBm	-162 dBm
-144 dBm	-156 dBm	-153 dBm	-162 dBm
-140 dBm	-155 dBm	-148 dBm	-162 dBm
-146 dBm	-158 dBm	-155 dBm	-162 dBm
	sensitivity (COLD) -148 dBm -146 dBm -140 dBm -144 dBm -140 dBm	sensitivity (COLD) sensitivity (HOT) -148 dBm -162 dBm -146 dBm -156 dBm -140 dBm -156 dBm -144 dBm -156 dBm -140 dBm -156 dBm	sensitivity (COLD)sensitivity (HOT)Re-acquisition sensitivity-148 dBm-162 dBm-157 dBm-146 dBm-156 dBm-153 dBm-140 dBm-156 dBm-156 dBm-144 dBm-156 dBm-153 dBm-140 dBm-155 dBm-148 dBm

Table 3-3. Sensitivity specifications for each satellite signal

[*1] Values are for BDS B1I stand-alone positioning.

4 Environment Robustness Specifications

The environmental robustness specifications for the GNSS receiver are described below.

Item Specification		Note	
Anti-Jamming Available carrier waves. In addition		It has 8 channels of anti-jamming function against carrier waves. In addition, jamming can be detected and notified by a sentence.	
Anti-Spoofing Available generates an alarm and eliminates th		It has a spoofing signal detection function which generates an alarm and eliminates the demodulation of spoofing signals. Please refer to the Protocol Specifications for more details.	
Multipath mitigation Available		It has the Dynamic Satellite Selection (DSS), a Furuno unique multipath countermeasure.	
T-RAIM Available		It is a function to eliminate anomalous satellites.	
Antenna current detection Available		By connecting an antenna detection circuit to this receiver, the antenna connection status (open, short) can be detected. Please refer to the hardware specifications for more details on recommended antenna detection circuits.	

Table 4-1. Environment Robustness Specifications

Operation restrictions 5

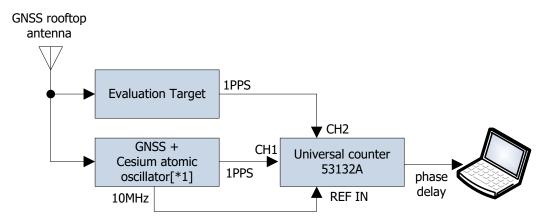

Based on the Wassenaar Arrangement on Export Controls for Conventional Arms and Dual-Use Goods and Technologies and Japanese export regulations, the operation of this product is limited to the following conditions. Please note.

Table 5-1. Operation restrictions				
ltem	Specification	Note		
Altitude	< 18300 meters			
Velocity	< 515 m/s			

6 1PPS Output specifications

This chapter describes the specifications for the 1PPS output signal. Please refer to the Protocol Specifications for the 1PPS signal settings. The performance described in this chapter was measured and evaluated in the environment shown in Figure 6.1 below. Unless otherwise noted, the measurement conditions are the default settings, in open sky, and at constant 25 degree C (no airflow).

Figure 6-1. 1PPS measurement environment

[* 1]

A cesium atomic oscillator that is corrected the aging characteristics by using the reference time of the GNSS receiver.

6.1 1PPS

Table 6.1-1. 1PPS basic specifications

Item	Specification	Note
1PPS output resolution (Time pulse jitter)	< ± 0.2 nsec	This is the hardware output resolution of this product related to the 1PPS output. The smaller it is, the more stabilize 1PPS output can be.
Synchronization target	GPS, UTC	1PPS output can be synchronized with GPS time or UTC time. Please refer to the Protocol Specifications for more details.
Setting time	< 60 sec	This is the time required for transition into the FINE LOCK state.
1PPS accuracy (Time deviation)	G.8272 PRTC-A compliant G.8272 PRTC-B compliant	@ 1sigma / [*1] This does not require an external oscillator, etc.
1PPS stability (MTIE)	G.8272 PRTC-A compliant G.8272 PRTC-B compliant	Relative MIN-MAX value / [*1] This does not require an external oscillator, etc.

Table 6.1-2. 1PPS output specifications

ltem	Specification	Note
1PPS accuracy (MAX TE)	< 40 nsec	MIN-MAX value from UTC time / [*1][*2]
1PPS stability (Standard deviation)	< 4.5 nsec	Standard deviation @ 1sigma / [*3]

[* 1]

The conditions are the default setting, open skies, and a constant 25 degree C environment (no airflow). In addition, it must be in the FINE LOCK state and must be in Self Survey mode for at least 3 hours or have already transitioned in Time Only mode.

[* 2]

It is necessary to adjust the cable delay in advance. In addition, it may be necessary to adjust the hardware offset of the entire system in which this product is installed.

[* 3]

The conditions are the default setting, open skies, and a constant 25 degree C environment (no airflow). In addition, it must be in the FINE LOCK state and must be in Self Survey mode for at least 24 hours or have already transitioned in Time Only mode.